Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data.

نویسندگان

  • Alexander Grishaev
  • Jinfa Ying
  • Marella D Canny
  • Arthur Pardi
  • Ad Bax
چکیده

A procedure is presented for refinement of a homology model of E. coli tRNA(Val), originally based on the X-ray structure of yeast tRNA(Phe), using experimental residual dipolar coupling (RDC) and small angle X-ray scattering (SAXS) data. A spherical sampling algorithm is described for refinement against SAXS data that does not require a globbic approximation, which is particularly important for nucleic acids where such approximations are less appropriate. Substantially higher speed of the algorithm also makes its application favorable for proteins. In addition to the SAXS data, the structure refinement employed a sparse set of NMR data consisting of 24 imino N-H(N) RDCs measured with Pf1 phage alignment, and 20 imino N-H(N) RDCs obtained from magnetic field dependent alignment of tRNA(Val). The refinement strategy aims to largely retain the local geometry of the 58% identical tRNA(Phe) by ensuring that the atomic coordinates for short, overlapping segments of the ribose-phosphate backbone and the conserved base pairs remain close to those of the starting model. Local coordinate restraints are enforced using the non-crystallographic symmetry (NCS) term in the XPLOR-NIH or CNS software package, while still permitting modest movements of adjacent segments. The RDCs mainly drive the relative orientation of the helical arms, whereas the SAXS restraints ensure an overall molecular shape compatible with experimental scattering data. The resulting structure exhibits good cross-validation statistics (jack-knifed Q (free) = 14% for the Pf1 RDCs, compared to 25% for the starting model) and exhibits a larger angle between the two helical arms than observed in the X-ray structure of tRNA(Phe), in agreement with previous NMR-based tRNA(Val) models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints.

Determination of the accurate three-dimensional structure of large proteins by NMR remains challenging due to a loss in the density of experimental restraints resulting from the often prerequisite perdeuteration. Solution small-angle scattering, which carries long-range translational information, presents an opportunity to enhance the structural accuracy of derived models when used in combinati...

متن کامل

Solution structure of the 128 kDa enzyme I dimer from Escherichia coli and its 146 kDa complex with HPr using residual dipolar couplings and small- and wide-angle X-ray scattering.

The solution structures of free Enzyme I (EI, ∼128 kDa, 575 × 2 residues), the first enzyme in the bacterial phosphotransferase system, and its complex with HPr (∼146 kDa) have been solved using novel methodology that makes use of prior structural knowledge (namely, the structures of the dimeric EIC domain and the isolated EIN domain both free and complexed to HPr), combined with residual dipol...

متن کامل

A physical picture of atomic motions within the Dickerson DNA dodecamer in solution derived from joint ensemble refinement against NMR and large-angle X-ray scattering data.

The structure and dynamics of the Dickerson DNA dodecamer [5'd(CGCGAATTCGCG)2] in solution have been investigated by joint simulated annealing refinement against NMR and large-angle X-ray scattering data (extending from 0.25 to 3 A-1). The NMR data comprise an extensive set of hetero- and homonuclear residual dipolar coupling and 31P chemical shift anisotropy restraints in two alignment media, ...

متن کامل

Application of dipolar coupling data to the refinement of the solution structure of the sarcin-ricin loop RNA.

Residual dipolar couplings can provide the long-range information that most NMR solution structures lack. The use of such data in protein structure determinations is now fairly routine, but even though these data should be much more useful for nucleic acids, their application to nucleic acid structure determination is still in its infancy. Here we present a method for producing accurate, dipola...

متن کامل

New methods of structure refinement for macromolecular structure determination by NMR.

Recent advances in multidimensional NMR methodology have permitted solution structures of proteins in excess of 250 residues to be solved. In this paper, we discuss several methods of structure refinement that promise to increase the accuracy of macromolecular structures determined by NMR. These methods include the use of a conformational database potential and direct refinement against three-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomolecular NMR

دوره 42 2  شماره 

صفحات  -

تاریخ انتشار 2008